Mechanochemical Continuum Modeling of Nanovoid Nucleation and Growth in Reacting Nanoparticles
نویسندگان
چکیده
Hollow nanoparticles (NPs) are produced by void nucleation and growth during chemical reactions. However, there is no proper understanding of nucleation and growth mechanisms and their predictive modeling. Models based on the Kirkendall effect predict the process time, which is larger by orders of magnitude than in experiment. This is why some works propose that a large tensile pressure in the core causes void nucleation. Here, a continuum-mechanics approach for nucleation and growth of a nanovoid in reacting NPs based on the Kirkendall effect is developed. In contrast to previous approaches, void nucleation and the effects of stresses are treated explicitly. The void nucleation condition vs pressure, temperature, size of a vacancy, core material, and initial reaction product layer is determined, and a strong multifaceted effect of mechanics is revealed. Thus, with mechanics, a cluster consisting of four vacancies represents the supercritical nucleus. Surprisingly, the core is under compression (which eliminates fracture hypothesis), and compressive pressure and reduced temperature promote void nucleation by decreasing the equilibrium concentration of vacancies at the void surface. However, they suppress void growth by reducing the diffusion coefficients. Our model quantitatively describes the experimental results for oxidation of copper NPs. A thermomechanical loading program is suggested to accelerate and control void nucleation and growth.
منابع مشابه
Population Balance Modelling of Zirconia Nanoparticles in Supercritical Water Hydrothermal Synthesis
Like any other precipitation process, in supercritical water hydrothermal synthesis (SWHS), the need to improve product quality and minimize production cost requires understanding and optimization of Particle Size Distribution (PSD). In this work, using Population Balance Equation (PBE) containing nucleation and growth terms, the reactive precipitation of zirconia nanoparticles prepared by ...
متن کاملTemperature effect on the nucleation and growth of TiO2 colloidal nanoparticles
The nucleation and growth of sol-gel derived TiO2 colloidal nanoparticles have been studied using experiment and theory as well. In this study, the temperature effect on the formation of TiO2 nanoparticles was discussed and some effective parameters such as the supply rate of solute (Q0), the mean volumic growth rate of stable nuclei during the nucleat...
متن کاملNanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals
A numerical model to estimate critical times required for nanovoid nucleation in high-purity aluminum single crystals subjected to shock loading is presented. We regard a nanovoid to be nucleated when it attains a size sufficient for subsequent growth by dislocation-mediated plasticity. Nucleation is assumed to proceed by means of diffusion-mediated vacancy aggregation and subsequent vacancy cl...
متن کاملEffect of Different Nucleation and Growth Kinetic Terms on Modeling Results of KNO3 CMSMPR Crystallizer
متن کامل
Modelling of the in-flight synthesis of TaC nanoparticles in thermal plasma jet
A simple and efficient numerical model describing the processes of nucleation, growth and transport of multi-component nanoparticles is developed. The approach is conceptually similar to the classical method of moments but can be applied to co-condensation of several substances. The processes of homogeneous nucleation, heterogeneous growth, and coagulations due to Brownian collisions are consid...
متن کامل